
Tekin Bicer David Chiu* and Gagan Agrawal
Department of Computer Science and Engineering, Ohio State University, Columbus, OH 43210

 *School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686

A Framework for Data Intensive Computing with Cloud Bursting

Introduction and Motivation
‣ Tremendous amounts of data to process in today’s

applications

‣Many users have in-house computing resources

‣ e.g., local clusters, storage networks

‣But the cloud can be used in conjunction to help:

‣ Store data remotely

‣ Large-scale computation

Cloud Bursting Processing System

Cloud Bursting Challenges
‣Workload may demand more resources over time

‣How best to manage a cooperation of cloud and local
resources?

‣Data distribution

‣ Job scheduling

Experimental Setup

‣ Compute Environment:

‣Ohio State cluster

‣ Compute Nodes: Intel Xeon (8 cores) and 6 GB RAM

‣ Interconnect: Compute nodes are connected via
Infiniband

‣ Storage: Dedicated 4TB storage node (SATA-SCSI)

‣Amazon Web Services cloud

‣ Compute Nodes: m1.large instance (2 VC’s, each VC
contains 2 elastic compute units = 1.7Ghz) and 7.5
GB RAM

‣ Interconnect: (High AWS I/O) ??

‣ Storage: S3 key-value store

Our Processing Framework vs. Map-Reduce
‣We focus on a variant of map-reduce class applications

‣Reduction Object: Data structure which holds the
aggregated result from the reduction phases

‣Local Reduction: The local reduction function
specifies how, after processing one data element, a
reduction object is updated.

‣Global Reduction: The multiple reduction objects are
combined to form the final results.

reduce()map()

(k1,v)

(k2,v)

(k1,v)

(k2,v)
(k2,v)

...

result

(k1,v)
(k1,v)

(k3,v)...

input data shuffle

Map-Reduce API

...

(k1,v')
(k2,v')
(k3,v')

...

...

reduce()map()

...

result

(k1,v)

(k1,v)
(k3,v)

...

combine()

(k1,v) (k1,v) ...

(k3,v) (k3,v) ...

...

input data

Map-Reduce API with combine()

(k1,v')

(k3,v')

...

(k1,v')

(k3,v')

(k1,v')

(k2,v')

shuffle
(k1,v'')
(k2,v'')
(k3,v'')

...

...

global reduction()

proc(e)

resultinput data

(k3,v')
(k1,v') rO

bj 1

(k2,v'')
(k1,v'')

com
bined rO

bj

...

(k1,v')

rO
bj 1

rO
bj K...

(k1,v')

...

...

Generalized Reduction API

... (k3,v'')
...

...local reduction()

!"#$%

&&&

&&&
'()(

*+(,$-

.(-)$/

&&&

&&&
'()(

*+(,$-

.(-)$/

&&

012(+34+5-)$/

4+15#3
33333333333333333336",7/1"8$")

9$(#

012(+
:$#52)71"

;1<3=--7>"8$")

;1<3*)$(+7">

;1<3=--7>"8$")

012(+
:$#52)71"

?+1<(+3:$#52)71"?+1<(+3:$#52)71"

;1<3
=--7>"8$")

;1<3
=--7>"8$")

Overall System Architecture

‣Data is stored in each cluster, but can be stolen and
processed by another cluster

‣Data is split into fixed chunks (jobs), and pooled at the
Head Node

‣Master Node at each cluster request a bundle of jobs
from the Head Node and assigns each job to the slaves

‣Slave Nodes perform the local reduction on the
assigned data chunk.

‣The assigned data may be from a different cluster

‣After all data has been processed, the Head Node
invokes the global reduction

‣Data Intensive Applications and Characteristics:

‣KNN (low comp, high I/O, small reduction obj)

‣K-Means (heavy comp, low I/O, small reduction obj)

‣ PageRank (low comp, high I/O, large reduction obj)

‣ 120 GB data for each application

Experimental Results

instances inside a cloud cluster) would naturally be ensured
to process more jobs. In similar fashion, a master node also
requests a group of jobs from the head on demand, thus
ensuring that the clusters with more processing power request
would perform more processing.

IV. EXPERIMENTAL RESULTS
We now describe results from a detailed evaluation study

we performed. Particularly, we evaluated the feasibility and
performance of data-intensive computing with cloud bursting
(as enabled by our framework), and then focus on the scala-
bility of the applications in this scenario. We initially describe
the experimental setup used.

A. Experimental Setup
Our local cluster on Ohio State campus contains Intel Xeon

(8 cores) compute nodes with 6GB of DDR400 RAM (with
1 GB dimms). Compute nodes are connected via Infiniband.
A dedicated 4TB storage node (SATA-SCSI) is used to store
data sets for our applications.
For the cloud environment, we use Amazon Web Ser-

vices’ Elastic Compute Cloud (EC2). Large EC2 instances
(m1.large) were chosen for for our experiments. According
to Amazon at the time of writing, these are 64-bit instances
with 7.5 GB of memory. Large instances provide two virtual
cores, and each core further contains two elastic compute units
(which are equivalent to a 1.7 GHz Xeon processor). Large
instances are also rated as having high I/O performance which,
according to Amazon, is amenable to I/O-bound applications,
suitable for supporting our system. Data sets for our applica-
tions are stored in Amazon’s popular Simple Storage Service
(S3).
Three well-known representative data-intensive applications

were used to evaluate our system, with various characteristics:
• K-Nearest Neighbors Search (knn): A classic
database/data mining algorithm. It has low computation,
leading to medium to high I/O demands and the reduction
object is small. For our experiments, the value of k is
set to 1000. The total number of processed elements is
32.1× 109.

• K-Means Clustering (kmeans): Another celebrated data
mining application. It has heavy computation resulting in
low to medium I/O, and a small reduction object. The
value of k is set to 1000. The total number of processed
points is 10.7× 109.

• PageRank (pagerank): Google’s algorithm for deter-
mining web documents’ importance [23]. It has low to
medium computation leading to high I/O, and a very large
reduction object. The number of page links is 50 × 106

with 9.26× 108 edges.
All the data sets used for knn, kmeans, and pagerank

are 120GB. The data sets are divided into 32 files. Moreover,
the total number of jobs generated from the data sets is 960
for each application.

B. Evaluation of Cloud Bursting
The goal of this first set of experiments is to evaluate

the feasibility of using cloud bursting or hybrid configuration
for data-intensive computing. Particularly, we want to see if,
despite overheads like global reduction across geographically

distributed clusters and remote data retrieval, application per-
formance can be scaled.
We execute our three applications over five configurations.

These configurations involve the same aggregate computing
power. In the first two configurations, which are local
and cloud, the computing resources and the datasets are at
the same location. In other words, these two configurations
involve centralized storage and processing, and are used as the
baseline. The next three configurations involve a 50-50 split of
computing power across local and cloud resources. Moreover,
within these three configurations, there is a varying amount of
skew or unevenness in the distribution of data. For example,
the data distribution for env-33/67 is 33% (40GB) of the
data is hosted locally, while 67% (80GB) is being hosted in
Amazon S3. By varying the amount of data skew, we increase
the amount of remote data retrieval that may be needed, and
thus can observe its impact on the overall performance. The
five configurations are summarized below:

Env. Data Dist. Cores
All app. knn & pagerank kmeans

Local S3 Local EC2 Local EC2
local 100% 0% 32 0 32 0
cloud 100% 0% 0 32 0 44
50/50 50% 50% 16 16 16 22
33/67 33% 67% 16 16 16 22
17/83 17% 83% 16 16 16 22

On the bottom of Figures 3(a), 3(b), and 3(c), the envi-
ronment, env-* reflect these setting labels. Furthermore in
the figures, the pair (m,n) below the env-* setting denotes
that m cores were used in the local cluster and n cores
were employed in the cloud. The number of cores for each
application and cluster is empirically determined according to
the computational power they provide. We set the throughput
power of each cluster as close as possible and evaluated the
overhead of usage of the cloud with the local resources. So for
instance, while the compute cores are equally halved for knn
and pagerank, the kmeans application requires slightly
more cores on the cloud. Our experience determined that 22
EC2 cores resulted in a more equal comparison with 16 local
cluster nodes due to the compute intensive nature of kmeans.
Due to the performance variability of EC2 during certain

times, each execution configuration was repeated at least three
times and the shortest execution time is being presented in the
figures. In Figure 3, we report the overall execution time as
the sum of processing time, time spent on data retrieval, and
sync. time. The sync. time can be viewed as a “barrier” wait
time, which is observed when the threads must synchronize
on either the cluster or cloud to perform a global reduction.
Another contribution to the sync. time is the time that either
system must wait for the other to finish before the final result
can be produced. For the first two configurations, env-local
and env-cloud, there are no inter-cluster communication
synchronization costs. However, there are still synchronization
overheads due to local combination and intra-cluster idle time
due to the slight variations in processing throughput among
the slave nodes. Recall that for the remaining configurations,
env-50/50, env-33/67, and env-17/83, we halved the
processing power of the local and cloud environment config-
urations. Therefore, the total throughput of the system was

0

200

400

600

800

1000
Ex

ec
ut

io
n

Ti
m

e
(s

ec
)

env-local
(32,0)

env-cloud
(0,32)

env-50/50
(16,16)

env-33/67
(16,16)

env-17/83
(16,16)

local
local local

EC2
EC2 EC2

0

500

1000

1500

2000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Processing
Data Retrieval
Sync

local EC2

local

EC2local
EC2

85.8%
speedup

73.2%
speedup

66.4%
speedup

EC2

local

(4,4) (8,8) (16,16) (32,32)

0

50

100

150

200

250

300

350

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Processing
Data Retrieval
Sync

env-local
(32,0)

env-cloud
(0,32)

env-50/50
(16,16)

env-33/67
(16,16)

env-17/83
(16,16)

local
local

local

EC2
EC2

EC2

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Processing
Data Retrieval
Sync

local EC2

local

EC2local

EC2

82.4%
speedup

89.3%
speedup

73.3%
speedup

EC2

local

(4,4) (8,8) (16,16) (32,32)
knn knn

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

env-local
(32,0)

env-cloud
(0,44)

env-50/50
(16,22)

env-33/67
(16,22)

env-17/83
(16,22)

local
local local

EC2
EC2 EC2

0

2000

4000

6000

8000

10000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Processing
Data Retrieval
Sync

local EC2

local

EC2local

EC2

86.7%
speedup

86.3%
speedup

88.3%
speedup

EC2

local

(4,4) (8,8) (16,16) (32,32)

kmeans kmeans

PR PR

Feasibility Scalability

